#### MISSISSIPPI STATE DEPARTMENT OF HEALTH #### **BUREAU OF PUBLIC WATER SUPPLY** # CALENDAR YEAR 2009 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM CAR Properties Public Water Supply Name 02U0172 List PWS ID #s for all Water Systems Covered by this CCR The Federal Safe Drinking Water Act requires each *community* public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request. | | r provided to the customers upon request. | |-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Pleas | e Answer the Following Questions Regarding the Consumer Confidence Report | | | Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other) | | | Advertisement in local paper On water bills Other Have Delivered | | | Date customers were informed: 6 /29/10 | | | CCR was distributed by mail or other direct delivery. Specify other direct delivery methods: | | | Date Mailed/Distributed:/_/ | | į | CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) | | | Name of Newspaper: | | | Date Published:/_/ | | <u>.</u> | CCR was posted in public places. (Attach list of locations) | | | Date Posted: / / | | | CCR was posted on a publicly accessible internet site at the address: www | | CERT | <u> </u> | | the for<br>consis | by certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in and manner identified above. I further certify that the information included in this CCR is true and correct and it tent with the water quality monitoring data provided to the public water system officials by the Mississippi State tment of Health, Bureau of Public Water Supply. | | - | Most of Dunes (4) Dunes (4) Dunes | | Náme | Title (President, Mayor, Owner, etc.) Date | | | Mail Completed Form to: Bureau of Public Water Supply/P.O. Roy 1700/Jackson MS 39215 | Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518 # 2009 C&R Properties Water Quality Report #### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). #### Where does my water come from? Ground Water #### Source water assessment and its availability All testing is done by Mississippi Health Department. Copies of the testing results are readily available if needed. Please call 228-392-1194 for information. #### Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? Any information needed, call 228-392-1194 #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. C&R Properties is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. No problems noted with lead. Most of the plumbing is pvc. ### **Water Quality Data Table** The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. | | MCLG<br>or | MCL,<br>TT, or | Your | i | inge | Sample | | | | | |---------------------------|------------------------|----------------|-------|-----|-------------|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--| | <u>Contaminants</u> | MRDLG | MRDL | Water | Low | <u>High</u> | <u>Date</u> | <u>Violation</u> | Typical Source | | | | Inorganic Contamin | Inorganic Contaminants | | | | | | | | | | | Fluoride (ppm) | 4 | 4 | 0.1 | NA | | 2009 | No | Erosion of natural deposits;<br>Water additive which<br>promotes strong teeth;<br>Discharge from fertilizer and<br>aluminum factories | | | | Mercury [Inorganic] (ppb) | 2 | 2 | 0.2 | NA | | 2009 | No | Erosion of natural deposits;<br>Discharge from refineries and<br>factories; Runoff from<br>landfills; Runoff from<br>cropland | | | | Thallium (ppb) | 0.5 | 2 | 0.5 | NA | | 2009 | No | Discharge from electronics,<br>glass, and Leaching from ore-<br>processing sites; drug<br>factories | | | | Nitrate [measured as Nitrogen] (ppm) | 10 | 10 | 0.2 | NA | 2009 | No | Runoff from fertilizer use;<br>Leaching from septic tanks,<br>sewage; Erosion of natural<br>deposits | |-----------------------------------------|----------|--------|-----------------|----|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------| | Nitrite [measured as<br>Nitrogen] (ppm) | 1 | 1 | 0.05 | NA | 2009 | No | Runoff from fertilizer use;<br>Leaching from septic tanks,<br>sewage; Erosion of natural<br>deposits | | Lead - source water (ppm) | | 0.0008 | 0.0008(<br>MPL) | NA | 2009 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Copper - source<br>water (ppm) | | 0.0177 | 0.0177(<br>MPL) | NA | 2009 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Antimony (ppb) | 6 | 6 | 0.5 | NA | 2009 | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Arsenic (ppb) | 0 | 10 | 0.904 | NA | 2009 | No | Erosion of natural deposits;<br>Runoff from orchards; Runoff<br>from glass and electronics<br>production wastes | | Barium (ppm) | 2 | 2 | 0.02676 | NA | 2009 | No | Discharge of drilling wastes;<br>Discharge from metal<br>refineries; Erosion of natural<br>deposits | | Beryllium (ppb) | 4 | 4 | 0.0001 | NA | 2009 | No | Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries | | Cadmium (ppb) | 5 | 5 | 0.0001 | NA | 2009 | No | Corrosion of galvanized pipes;<br>Erosion of natural deposits;<br>Discharge from metal<br>refineries; runoff from waste<br>batteries and paints | | Chromium (ppb) | 100 | 100 | 0.0005 | NA | 2009 | No | Discharge from steel and pulp mills; Erosion of natural deposits | | Selenium (ppb) | 50 | 50 | 0.0005 | NA | 2009 | No | Discharge from petroleum and<br>metal refineries; Erosion of<br>natural deposits; Discharge<br>from mines | | Cyanide [as Free Cn] (ppb) | 200 | 200 | 0.0005 | NA | 2009 | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | Volatile Organic Con | taminant | 3 | | | | | | | 1,2,4-<br>Trichlorobenzene<br>(ppb) | 70 | 70 | 0.5 | NA | 2009 | No | Discharge from textile-<br>finishing factories | | cis-1,2-<br>Dichloroethylene<br>(ppb) | 70 | 70 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | 1 . . . | Xylenes (ppm) | 10 | 10 | 0.5 | NA | 2009 | No | Discharge from petroleum factories; Discharge from chemical factories | |------------------------------------------|-----|-----|-----|----|------|----|-------------------------------------------------------------------------------| | Dichloromethane (ppb) | 0 | 5 | 0.5 | NA | 2009 | No | Discharge from pharmaceutical and chemical factories | | o-Dichlorobenzene<br>(ppb) | 600 | 600 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | p-Dichlorobenzene<br>(ppb) | 75 | 75 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | NA | 2009 | No | Leaching from PVC piping;<br>Discharge from plastics<br>factories | | 1,1-Dichloroethylene (ppb) | 7 | 7 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | trans-1,2-<br>Dicholoroethylene<br>(ppb) | 100 | 100 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | 1,1,1-Trichloroethane (ppb) | 200 | 200 | 0.5 | NA | 2009 | No | Discharge from metal degreasing sites and other factories | | Benzene (ppb) | 0 | 5 | 0.5 | NA | 2009 | No | Discharge from factories;<br>Leaching from gas storage<br>tanks and landfills | | Toluene (ppm) | 1 | 1 | 0.5 | NA | 2009 | No | Discharge from petroleum factories | | Styrene (ppb) | 100 | 100 | 0.5 | NA | 2009 | No | Discharge from rubber and plastic factories; Leaching from landfills | ## **Undetected Contaminants** The following contaminants were monitored for, but not detected, in your water. | | MCLG<br>or | MCL<br>or | Your | | | |----------------------------------------|------------|-----------|--------------|------------------|-------------------------------------------| | <u>Contaminants</u> | MRDLG | MRDL | <u>Water</u> | <u>Violation</u> | Typical Source | | TTHMs [Total<br>Trihalomethanes] (ppb) | NA | 80 | ND | No | By-product of drinking water disinfection | | Haloacetic Acids (HAA5) (ppb) | NA | 60 | ND | No | By-product of drinking water chlorination | | Descriptions | | | | | | | | | |--------------|--------------------------------------------------------|--|--|--|--|--|--|--| | Term | Definition | | | | | | | | | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | | | | | | | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | | | | | | | | NA | NA: not applicable | | | | | | | | | ND | ND: Not detected | | | | | | | | | Important Drinking Water Definition | 18 | |-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Term | Definition | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique: A required process intended to reduce the leve of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded triggers treatment or other requirements which a water system must follow. | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | #### For more information please contact: Contact Name: Travis Paige Address: 6313 Seawinds Blvd. Biloxi, MS 39532 Phone: 228-297-0207 E-Mail: travispg@bellsouth.net # 2009 C&R Properties Water Quality Report #### Is my water safe? Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. #### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). #### Where does my water come from? Ground Water #### Source water assessment and its availability All testing is done by Mississippi Health Department. Copies of the testing results are readily available if needed. Please call 228-392-1194 for information. #### Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? Any information needed, call 228-392-1194 #### **Conservation Tips** Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature. - Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month. - Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month. - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month. - Water plants only when necessary. - Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month. - Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation. - Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! - Visit <u>www.epa.gov/watersense</u> for more information. #### **Source Water Protection Tips** Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source. - Pick up after your pets. - If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system. - Dispose of chemicals properly; take used motor oil to a recycling center. - Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team. - Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body. #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. C&R Properties is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. No problems noted with lead. Most of the plumbing is pvc. ### **Water Quality Data Table** The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. | Disinfectants & Disinfectant I | | | LOW . | High | <u>Date</u> | <u>Violation</u> | Typical Source | |----------------------------------|--------------|------------|-----------|----------|-------------|------------------|-----------------------------------------| | | | | | | | . 1 0 | | | (There is convincing evidence th | nat addition | n of a dis | intectant | t is nec | cessary to | r control of | microbiai contaminants) | | Chlorine (as Cl2) (ppm) 4 | 4 | 0.9 | 0.5 | 1 | 2009 | No | Water additive used to control microbes | | Fluoride (ppm) | 4 | 4 | 0.1 | NA | 2009 | No | Erosion of natural deposits;<br>Water additive which<br>promotes strong teeth;<br>Discharge from fertilizer and<br>aluminum factories | |--------------------------------------|-----|--------|-----------------|----|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------| | Mercury [Inorganic] (ppb) | 2 | 2 | 0.2 | NA | 2009 | No | Erosion of natural deposits;<br>Discharge from refineries and<br>factories; Runoff from<br>landfills; Runoff from<br>cropland | | Thallium (ppb) | 0.5 | 2 | 0.5 | NA | 2009 | No | Discharge from electronics, glass, and Leaching from ore-<br>processing sites; drug factories | | Nitrate [measured as Nitrogen] (ppm) | 10 | 10 | 0.2 | NA | 2009 | No | Runoff from fertilizer use;<br>Leaching from septic tanks,<br>sewage; Erosion of natural<br>deposits | | Nitrite [measured as Nitrogen] (ppm) | 1 | 1 | 0.05 | NA | 2009 | No | Runoff from fertilizer use;<br>Leaching from septic tanks,<br>sewage; Erosion of natural<br>deposits | | Lead - source water (ppm) | | 0.0008 | 0.0008(<br>MPL) | NA | 2009 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Copper - source<br>water (ppm) | | 0.0177 | 0.0177(<br>MPL) | NA | 2009 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Antimony (ppb) | 6 | 6 | 0.5 | NA | 2009 | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Arsenic (ppb) | 0 | 10 | 0.904 | NA | 2009 | No | Erosion of natural deposits;<br>Runoff from orchards; Runoff<br>from glass and electronics<br>production wastes | | Barium (ppm) | 2 | 2 | 0.02676 | NA | 2009 | No | Discharge of drilling wastes;<br>Discharge from metal<br>refineries; Erosion of natural<br>deposits | | Beryllium (ppb) | 4 | 4 | 0.0001 | NA | 2009 | No | Discharge from metal<br>refineries and coal-burning<br>factories; Discharge from<br>electrical, aerospace, and<br>defense industries | | Cadmium (ppb) | 5 | 5 | 0.0001 | NA | 2009 | No | Corrosion of galvanized pipes;<br>Erosion of natural deposits;<br>Discharge from metal<br>refineries; runoff from waste<br>batteries and paints | | Chromium (ppb) | 100 | 100 | 0.0005 | NA | 2009 | No | Discharge from steel and pulp<br>mills; Erosion of natural<br>deposits | , | Selenium (ppb) | 50 | 50 | 0.0005 | NA | 2009 | No | Discharge from petroleum and<br>metal refineries; Erosion of<br>natural deposits; Discharge<br>from mines | |------------------------------------------|----------|-----|--------|----|------|----|-----------------------------------------------------------------------------------------------------------| | Cyanide [as Free Cn] (ppb) | 200 | 200 | 0.0005 | NA | 2009 | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | Volatile Organic Con | taminant | S | | | | | | | 1,2,4-<br>Trichlorobenzene<br>(ppb) | 70 | 70 | 0.5 | NA | 2009 | No | Discharge from textile-<br>finishing factories | | cis-1,2-<br>Dichloroethylene<br>(ppb) | 70 | 70 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | Xylenes (ppm) | 10 | 10 | 0.5 | NA | 2009 | No | Discharge from petroleum factories; Discharge from chemical factories | | Dichloromethane (ppb) | 0 | 5 | 0.5 | NA | 2009 | No | Discharge from pharmaceutical and chemical factories | | o-Dichlorobenzene<br>(ppb) | 600 | 600 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | p-Dichlorobenzene<br>(ppb) | 75 | 75 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | NA | 2009 | No | Leaching from PVC piping;<br>Discharge from plastics<br>factories | | 1,1-Dichloroethylene (ppb) | 7 | 7 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | trans-1,2-<br>Dicholoroethylene<br>(ppb) | 100 | 100 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | 0.5 | NA | 2009 | No | Discharge from industrial chemical factories | | 1,1,1-Trichloroethane<br>(ppb) | 200 | 200 | 0.5 | NA | 2009 | No | Discharge from metal degreasing sites and other factories | | Benzene (ppb) | 0 | 5 | 0.5 | NA | 2009 | No | Discharge from factories;<br>Leaching from gas storage<br>tanks and landfills | | Toluene (ppm) | 1 | 1 | 0.5 | NA | 2009 | No | Discharge from petroleum factories | | Styrene (ppb) | 100 | 100 | 0.5 | NA | 2009 | No | Discharge from rubber and plastic factories; Leaching from landfills | # **Undetected Contaminants** The following contaminants were monitored for, but not detected, in your water. | MCLG | MCL | | |------|-----|--| | <u>Contaminants</u> | or<br><u>MRDLG</u> | or<br><u>MRDL</u> | Your<br><u>Water</u> | <u>Violation</u> | Typical Source | |----------------------------------------|--------------------|-------------------|----------------------|------------------|-------------------------------------------| | TTHMs [Total<br>Trihalomethanes] (ppb) | NA | 80 | ND | No | By-product of drinking water disinfection | | Haloacetic Acids (HAA5) (ppb) | NA | 60 | ND | No | By-product of drinking water chlorination | | Term | Definition | |------|--------------------------------------------------------| | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | NA | NA: not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Important Drinking Water Definitions | | | |--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Term | Definition | | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | | MNR | MNR: Monitored Not Regulated | | | MPL | MPL: State Assigned Maximum Permissible Level | | #### For more information please contact: Contact Name: Travis Paige Address: Address: 6313 Seawinds Blvd. Biloxi, MS 39532 Phone: 228-297-0207 E-Mail: travispg@bellsouth.net #### **2009 CCR Contact Information** | Date: 7/28/10 Time: 4:00 | |----------------------------------------------------------------------------------------| | PWSID: 240172 | | System Name: CAR Properties | | Lead/Copper Language Chlorine Residual (MRDL) RAA | | Other Violation(S) | | Will correct report & mail copy marked "corrected copy" to MSDH. | | Will notify customers of availability of corrected report on next monthly bill. | | Mr. Paige Will do a Corrector Coop and Notify<br>Customers by Posting at the Mail Box! | | LIDADINIS DY FOSTING OF THE MIGHT DEX. | | | | | | | | | | | | | | | | Spoke with Travis Paige 338-297-6207 (Operator, Owner, Secretary) |